近日,中国科学院大连化学物理研究所能源研究技术平台研究员刘岳峰等,联合山西煤炭化学研究所副研究员刘星辰、意大利墨西拿大学教授gabriele centi等,在利用气氛诱导调控催化剂表面结构方面取得新进展:利用具有强氧化物载体相互作用(surface oxide-support interaction,sosi)与传统强金属载体相互作用(strong metal-support interaction,smsi)竞争策略,定向诱导tio2选择性的向mno表面自发分散,而非向过渡金属表面迁移形成包裹结构(m@tio2);形成的tio2/mno界面可作为高效h传输通道,提高表面活性h物种浓度,促进整个加氢反应过程。与传统的ru/mnox催化剂相比,ru/ti/mn催化剂逆水煤气变换(rwgs)性能提高了3.3倍;在400°c时co的生成速率可达87.5mmolg-1h-1,并表现出优异的co选择性(>99%)。
催化剂在气氛环境诱导下发生结构的演变,增大了催化活性位点的准确辨析难度,提供了纳米结构调控策略,获得了与传统合成工艺所难以实现的催化活性中心。smsi是催化剂在气氛环境诱导下发生结构演变的典型现象之一,被广泛应用到催化剂的创制中。它主要是高温h2处理后的可还原性氧化物载体(如tio2、nb2o3等)表面被部分还原后迁移至金属表面,形成包覆结构。这种现象可以使目标产物选择性获得有效地调控,并保持了催化剂的结构稳定性;而这种包覆的结构牺牲了暴露的活性位点,抑制了反应物分子的吸附活化,尤其是在加氢反应中表现出较差的催化活性。
本工作基于tio2在高温h2气氛下的可迁移特性,利用tio2和mno之间的sosi,使得tio2可以选择性的向mno表面自分散,在mno表面形成tiox“补丁”,而非向金属表面(如ru)迁移。该策略在保证高活性金属利用率的同时,自发的形成了高密度的tiox/mno界面,可以有效地促进活性h物种向载体表面迁移,形成表面富氢环境,促进co2还原为co。同时,该策略对逆水煤气变换性能的促进,既不依赖于金属种类(m=ru、pt、pd)也不依赖于tio2的引入方法和晶型,即使直接固相研磨混合ru/tio2和ru/mnox催化剂也可以实现。该研究利用原位生成氧化物—氧化物界面作为氢物种的传输通道,为设计高效选择性加氢催化剂提供了新策略。
近年来,该团队在co/co2能源小分子的高效转化催化剂的设计以及原位过程中微观结构动态演变方向取得了一系列进展,包括co2分子活化与转化、co加氢转化、纳米催化剂的原子结构精确分析以及原位动态过程的认识。
相关研究成果以generation of oxide surface patches promoting h-spillover in ru/(tiox)mno catalysts enables co2 reduction to co为题,发表在《自然-催化》(nature catalysis)上。研究工作得到国家自然科学基金和辽宁省“兴辽英才计划”等的支持。(来源:中国科学院大连化学物理研究所)
相关论文信息:
大连化物所提出氧化物气氛诱导迁移合成高效加氢催化剂新策略
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负yabo亚博88的版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。