新算法突破实现药物-亚博电竞网站

 新算法突破实现药物-亚博电竞网站

 
作者:罗海彬等 来源:《药学学报》 发布时间:2024/7/26 10:39:08
选择字号:
新算法突破实现药物-靶标亲合力快速精准预测

 

海南大学药学院教授罗海彬团队联合中山大学药学院副教授李哲团队提出了一种基于组合结构的相对结合自由能 (cs-fep) 的药物设计新方法,实现小分子药物与生物大分子靶标间的结合自由能(以下简称药物-靶标亲合力)的快速精准预测,取得药物设计关键技术的突破,实现自由能微扰(fep)在药物设计新方法领域的国产化和自主可控。近日,相关研究成果发表在《药学学报》上。

实现药物-靶标亲合力的快速精准预测,可缩短新药创制周期,降低研发成本并提升研发效率。fep方法是基于统计力学理论,经过严格推导而来,理论精度较高,在相关方面具有良好应用前景。但现有的fep方法难以模拟非物理中间态,得到收敛结果的计算成本高,且缺乏公认的最佳流程,因而尚未得到广泛应用。

美国药物设计软件企业薛定谔发展的fep在相对自由能上的预测方法受到制药企业和科研工作者的极大关注,但该方法只能被应用于预测结构相似药物间的相对结合自由能,无法预测不同骨架的化合物与靶标亲合力,对我国用户的使用有诸多限制且许可费用昂贵。

为此,罗海彬/李哲联合团队提出了cs-fep新方法。该方法通过构建全新的热力学微扰路径,提高计算过程中相邻状态间的相空间重叠,从而加快fep在相对自由能预测方法计算收敛速度。相关实验结果表明,使用该方法可显著提高药物-靶标亲合力的预测效率和精度,预测计算在一天内便能完成,效率较传统fep方法提高了30倍。

据了解,近年来罗海彬/李哲联合团队在fep驱动的药物设计新方法研究已开展了一系列布局,致力于将fep方法应用于药物设计的各个典型应用场景,已形成涵盖虚拟筛选、骨架跃迁、结构优化、构效关系研究等新药发现多个环节的独特创新体系,发表7篇高水平的研究论文并申请两个发明专利。尤其是此次提出的cs-fep方法,有望成为加速先导化合物优化的“利器”,为新药研发注入新的动力。

下一步,该团队将继续完善相关方法,提高基于fep药物设计新方法的计算效率及预测精度,并进一步拓宽该类方法的应用场景。(来源:中国科学报 温才妃)

相关论文信息:

 
 打印  发e-mail给: 
    
 
网站地图